

Project risk matrix

Version 1.0

Pavel Ivashechkin, Tobias Kempken, Thomas Piontek, Thorsten Hauck (BFI) Valentina Colla, Ismael Matino (SSSA) Henry Merten, Siegmar Wirtz, Viktor Scherer (RUB) Fabrice Patisson, Olivier Mirgaux (UL) Henrik Saxén (AAU) Güçhan Yapar, Jan van der Stel, Tim Peeters (TS) Massimo Poletto, Diego Barletta, Salvatore La Manna (UniSa) Wojciech Szulc, Mariusz Borecki, Jarosław Marcisz, Marian Niesler, Piotr Różański (IMZ) Roberto Russo, Anna Bozza (CTECH) Delphine Snaet, Klaus Peters (ESTEP)

June 2022

© MaxH2DR Consortium, 2022

This project has received funding from the European Union under grant agreement NUMBER — 101058429 — MaxH2DR

The information and views set out in this document do not necessarily reflect the official opinion of the European Commission. The European Commission does not guarantee the accuracy of the data included in this document. Neither the European Commission nor any person acting on the European Commission's behalf may be held responsible for the use which may be made of the information contained therein.

Introduction

During the consultation with the project partners and considering current pandemics situation and delivery delays due to the Russian attack on Ukraine the initial Risk Matrix as included in the proposal was extended. Added risks as well as adjustments of the initial risk evaluation are marked by yellow color (Tables 1-3). The initial Risk Matrix is presented in Table 4. The extended Risk Matrix will be continuously updated and used for risk management in the project.

Technical Risks

Description of risk	WP	Proposed risk mitigation measures
Kinetic experiments give conflicting results	1	Repeated experiment, better controlled conditions, assure homogeneity of the samples
Likelihood: medium; <u>Severity:</u> medium		
Kinetic modelling fails to reproduce experimental results Likelihood: medium; Severity: medium	1	Revise model structure based on experience, literature and systematic evaluation of discrepancies
Safety limits are exceeded due to H ₂ enrichment in the gas exhaust of the metallurgical laboratory set up Likelihood: medium; <u>Severity</u> : medium	1	Inert gas (N_2) will be injected to the exhaust gas pipeline prior to any O_2 contact (e.g. air) and CO monitoring will be added to the gas outlet of the set up.
Design and construction of shear cell might be delayed which affects DEM cohesion model development Likelihood: low; <u>Severity:</u> low	1	The structural coupling of cohesion model with the DR model can and will be carried without measurements data. This allows for a fast adjustment as soon as data are available.
Design and construction of special stand for testing sinter reduction in hydrogen atmosphere might be delayed due to e.g. equipment supply delays due to electronics shortage, inflation, covid, etc. Likelihood: medium, <u>Severity:</u> medium	1	Delay will be immediately reported to the WP coordinator who can modify the following tasks to reduce the reliance and adjust WP schedule to complete the tasks in time.
Problem with hydrogen gas seal along piston in stresses experimental set up Likelihood: medium; <u>Severity:</u> medium	1	Double seal with nitrogen flow in the intermediate region
Insufficient normal stress in stresses experimental set up Likelihood: medium, <u>Severity:</u> medium	1	Use a reduced volume of the set up. If still insufficient, the experience will be limited to shear stress results, which can still be sufficient for a proper calibration procedure.
Difficulties in launching a research installation Likelihood: low; Severity: medium	1, 2	Contingency plan will be developed, contacts of experiences staff, partners and service companies will be prepared.
Breakdown of key laboratory device or instrument Likelihood: low: Severity: high	1, 2	Plan for backup facilities. Temporary rescheduling of tasks to guarantee the progress of the project.

Table 1: Critical technical risks for implementation

Description of risk	WP	Proposed risk mitigation measures
Reproducibility of particle orientation in experiments is low Likelihood: high; <u>Severity:</u> medium	2	Required number of experiments to ensure reproducibility will be defined with statistical methods prior to experiment start
Insufficient pellet crushing during experiments Likelihood: low; <u>Severity:</u> medium	2	Controlling particle distribution and changing/ repurchasing material
High dust content in experimental set up Likelihood: high; Severity: high	2	Implementation of new suction and filter system
Severe numerical problems encountered in flowsheet models Likelihood: low; <u>Severity:</u> medium	3	Incremental development of software with regular checkpoints. Backup by experienced researchers in the consortium.
Flowsheet models produce infeasible states of the studied plants Likelihood: medium; <u>Severity:</u> low	3	Revise formulation of unit process models and impose appropriate constraints
Excessive computational burden or low accuracy of developed models in case for instance of complex units/processes Likelihood: low; Severity: medium	3	The analyses of the unit/process will be deepened. The possibility of simplification of the related model and combination of different modelling approaches will be considered.
The simulation of large scale DR reactor might lead to too exhaustive computing times endangering project schedule Likelihood: medium; <u>Severity:</u> low	3	Coarse graining, replacement of complex DR single particle models by less complex models, reduced gas phase kinetics, periodic boundary conditions
Lack of validation data Likelihood: medium; <u>Severity:</u> medium	3	Literature data will be used as first validation step in case of lack of data. In addition, stakeholder consultations will be intensified.
High amount of outliers/anomalies in collected data <u>Likelihood:</u> medium; <u>Severity:</u> medium	3	Early outliers detection with statistical methods and substitution approaches/experiment or model modification.

Financial risks

Table 2: Critical financial risks for implementation

Description of risk	WP	Proposed risk mitigation measures
Budget deviations in adjustment and operation of H ₂ reduction test trials <u>Likelihood:</u> low; <u>Severity:</u> medium	1	Continuous costs monitoring. Contingency actions such as a) re-defining experiment matrix, b) alternative experimental design
Costs increase for experimental activities due to strong increase of the price of energy, fuel and materials as a consequence of the Ukraine war. <u>Likelihood:</u> high; <u>Severity:</u> low	1,2	Continuous costs monitoring. Contingency actions such as a) re-defining experiments matrix, b) limit other costs to gain margins for covering the increased costs of experiments.
Currency risk - change in the exchange rate (Zloty/Euro) Likelihood: low; Severity: low	All WPs	Currency exchange rate monitoring. Any additional costs will be covered from own funds.

Administrative risks

Table 3: Critical administrative risks for implementation

Description of risk	WP	Proposed risk mitigation measures
Key milestones and deliverables are delayed Likelihood: medium; <u>Severity:</u> medium	All WPs	Delay will be immediately flagged to the WP coordinator who can modify the following tasks to reduce the reliance and adjust WP schedule to complete the tasks in time.
Key persons leave the teams during the project Likelihood: medium; <u>Severity:</u> medium	All WPs	Plan for backup personnel and expertise. Regular documentation and exchange of progress and results.
Cyber-attack of project partner PCs/ experimental plants and data loss Likelihood: medium; <u>Severity</u> : high	All WPs	Regular data backup, especially of relevant experimental data; Regular virus scan; Blocking of USB ports and online connections of relevant experimental equipment
Delaying project implementation due to global pandemic <u>Likelihood:</u> medium; <u>Severity:</u> medium	All WPs	Close monitoring of possible delays, rapid communication to WP leader to analyse the implications and reschedule tasks and actions
Delay in deliveries of auxiliary materials (e.g. process gases, spare parts). Likelihood: high; <u>Severity:</u> medium	1, 2	Avoiding the threat by working with alternative suppliers - based on many years of cooperation
Failure to obtain permits for the construction of the installation Likelihood: low; <u>Severity:</u> medium	2	Avoiding the threat by applying to administrative bodies and correction of documentation when a risk occurs
Safety of the developed installation Likelihood: low; <u>Severity:</u> medium	2	Thorough safety evaluation of the installation with possible risks and mitigation plan
Delays in the preparation of technical and tender documentation Likelihood: medium; <u>Severity:</u> high	2	Early preparation start, monitoring, timely correction actions. The tender will be in line with the Awarding Regulations Orders.
Insufficient communication among the partners Likelihood: low; <u>Severity:</u> high	3	Roles and responsibilities between participants will be clearly defined in project meetings. Up-to- date communication is ensured by regular meetings.

Initial Risk Matrix from the proposal

Table 4: Critical risks for implementation

Description of risk	WP	Proposed risk mitigation measures
Technical risks		
Kinetic experiments give conflicting	1	Repeated experiment, better controlled
results		conditions, assure homogeneity of the
Likelihood: medium; Severity: medium		samples
Kinetic modelling fails to reproduce	1	Revise model structure based on
experimental results		experience, literature and systematic
Likelihood: medium; Severity: medium		evaluation of discrepancies
Safety limits are exceeded due to H ₂	1	Inert gas (N_2) will be injected to the exhaust
enrichment in the gas exhaust of the		gas pipeline prior to any O_2 contact (e.g.
metallurgical laboratory set up		air) and CO monitoring will be added to the
Likelihood: medium; Severity: medium		gas outlet of the set up.
Reproducibility of particle orientation in	2	Required number of experiments to ensure
experiments is low		reproducibility will be defined with statistical
Likelihood: high; Severity: medium		methods prior to experiment start
Flowsheet models produce infeasible	3	Revise formulation of unit process models
states of the studied plants		and impose appropriate constraints.
Likelihood: medium; Severity: low		Backup by experienced researchers in the
		consortium.
Breakdown of key laboratory device	3	Plan for backup facilities. Temporary
Likelihood: low; <u>Severity:</u> high		rescheduling of tasks to guarantee the
		progress of the project.
Excessive computational burden or low	3	Deepen the analyses of the unit/process. If
accuracy of models		possible, simplify the related model and
Likelihood: low; <u>Severity:</u> medium		combine different modelling approaches.
Financial risks		
Budget deviations in adjustment and	1	Continuous costs monitoring. Contingency
operation of H ₂ reduction test trials		actions such as a) re-defining experiment
Likelihood: low; <u>Severity:</u> ,edium		matrix b) alternative experimental design
Currency risk - change in the exchange	All	Currency exchange rate monitoring
rate	WPs	(Zloty/Euro). Any additional costs will be
Likelihood: medium; Severity: low		covered from own funds.
Administrative risks		
Key milestones and deliverables are	1, 3	Delay will be immediately flagged to the WP
delayed (also due to pandemics)		coordinator who will modify the following
Likelihood: medium; Severity: medium		tasks to reduce the reliance and adjust WP
		schedule to complete the tasks in time

Description of risk	WP	Proposed risk mitigation measures
Key persons leave the teams	All	Plan for backup personnel and expertise.
Likelihood: medium; Severity: medium	WPs	Regular documentation of progress and
		results.
Insufficient communication among	3	Roles and responsibilities between
partners Likelihood: low; Severity: high		participants clearly defined in meetings.
		Communication is ensured by regular
		meetings.