

Towards circularity in steel industry: a joint journey between industry and universities along multiple TRL levels Inge Bellemans and Kim Verbeken

DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING

Fit for 55

Fit for 55:

CO2 emission standards for cars and vans

and FuelEU maritime

Source: Council of the European Union

Social climate

fund

2

CO₂ production

CO₂ emissions (Mt)

Carbon intensity (ton CO₂/ton steel)

Source: Pei et al., Metals 2020, 10(7), 972

UNIVERSITY

Bridging the TRL gap

GHENT UNIVERSITY

Decarbonisation technologies

Source: Climate-neutral steelmaking in Europe – Decarbonisation pathways, investment needs, policy conditions, recommendations 2022

UNIVERSITY

Increased scrap usage

(Carbon)

TRL 4-8

FLEXCHARGE, ADAPTEAF

on oxide resion

iversion); nplementation)

hem, STEELANOL

Electricity

TRL 2

ULCOS, IERO, VALORCO

Molten oxide electrolysis

Supporting technologies: CO2 capture, hydrogen production

Increased scrap use

Source: Eurofer; Voraberger et al. Metals 2022, 12(3), 466;

Optimised BF-BOF

GHENT

UNIVERSITY

Source: Climate-neutral steelmaking in Europe – Decarbonisation pathways, investment needs, policy conditions, recommendations 2022

Electric furnaces: digital twins

Power generation via Joule heat

● 2 S/m ● 2.5 S/m • 3 S/m

Huge spread on experimental results + 2 contributions

Hundermark et al., 2004, VII International Conference on Molten Slags Fluxes and Salts

Electrical conductivity measurements

Boeykens et al., Electrochimica Acta Vol 464 (2023) 142846 (Ghent University)

Results: Effect substitution of PbO by CaO

Sample composition: SiO₂ = 52 mol% Varying amounts of CaO (and PbO)

Results showing that substituting CaO for PbO in a system with a constant amount of silica resulted in a significant decrease in the electrical conductivity (not described by current structure-property model)

To be published PhD PJ Boeykens **(Ghent University)**

Decarbonisation technologies

Source: Climate-neutral steelmaking in Europe – Decarbonisation pathways, investment needs, policy conditions, recommendations 2022

Supporting technologies: CO2 capture, hydrogen production

Alternative carbon sources: Life SMART

Decarbonisation technologies

Source: Climate-neutral steelmaking in Europe – Decarbonisation pathways, investment needs, policy conditions, recommendations 2022

Increased scrap usa	ge	Carbon oxide conversion
(Carbon) TRL 4-8 FLEXCHARGE, ADAPTEAF		Carbon
		TRL 8 (conversion); TRL 4-5 (implementation)
		Carbon2Chem, STEELANOL
	Electricity	
	Electricity TRL 2	
, ASCoPE	Electricity TRL 2 ULCOS, II	ERO, VALORCO

Supporting technologies: CO2 capture, hydrogen production

Source: Climate-neutral steelmaking in Europe – Decarbonisation pathways, investment needs, policy conditions, recommendations 2022

GHENT

Hydrogen reduction

Source: Ma et al. Scripta Materialia, Volume 213, May 2022, 114571

18

Decarbonisation technologies

Source: Climate-neutral steelmaking in Europe – Decarbonisation pathways, investment needs, policy conditions, recommendations 2022

TRL 8 (conversion); TRL 4-5 (implementation)

Carbon2Chem, STEELANOL

Electricity TRL 2 ULCOS, IERO, VALORCO

Molten oxide electrolysis

Molten oxide electrolysis

Source: Allanore, 2015 J. Electrochem. Soc. 162 E13

Slag viscosity

Slag foaming (stable \leftrightarrow eruptive)

Ca0

Slag suspension viscosity

Slag viscosity = resistance against flow

Depends on:

- slag structure
- temperature
- presence of solids

Vergote et al., Journal of rheology 67 (2023), 1159–1174 (Ghent University)

22

 $\eta = \eta_{\text{liquid}} \times f_{\text{solids}} (\Phi_{\text{solids}}, \text{morphology}, \text{orientation})$ Various parameters, many neglected \rightarrow Reproducibility slag suspension viscosity low

Methodology – slag system

Three datasets studied

Spinel small

Spinel medium

13 µm 0 – 7 vol%

Vergote et al., Journal of rheology 67 (2023), 1159–1174 (Ghent University)

Spinel large

76 µm 0 – 16 %

Results: spinel – effect of size

Weak internal structure

Opportunity: combination with molecular modelling

Simulation Output Slag structure

Thorough analysis gives physical slag properties:

 \checkmark Diffusivity

 \checkmark Viscosity

273 (2023) 118642

Mongalo et al., Journal of Non-Crystalline Solids Vol 452 (2016), P 194-202

Inge Bellemans

DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING RESEARCH GROUP SUSTAINABLE MATERIALS SCIENCE

- E Inge.Bellemans@ugent.be
- T +32 9 331 04 21

f	Ghent University
y	@ugent
in	Ghent University

www.ugent.be/ea/match/sms

